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ABSTRACT: Forecast skill from dynamical forecast models decreases quickly with projection time due to various errors.
Therefore, postprocessing methods, from simple bias correction methods to more complicated multiple linear regression–
based model output statistics, are used to improve raw model forecasts. Usually, these methods show clear forecast im-
provement over the raw model forecasts, especially for short-range weather forecasts. However, linear approaches have
limitations because the relationship between predictands and predictors may be nonlinear. This is even truer for extended
range forecasts, such as week-3–4 forecasts. In this study, neural network techniques are used to seek or model the relation-
ships between a set of predictors and predictands, and eventually to improve week-3–4 precipitation and 2-m temperature
forecasts made by the NOAA/NCEP Climate Forecast System. Benefitting from advances in machine learning techniques
in recent years, more flexible and capable machine learning algorithms and availability of big datasets enable us not only to
explore nonlinear features or relationships within a given large dataset, but also to extract more sophisticated pattern rela-
tionships and covariabilities hidden within the multidimensional predictors and predictands. Then these more sophisticated
relationships and high-level statistical information are used to correct the model week-3–4 precipitation and 2-m tempera-
ture forecasts. The results show that to some extent neural network techniques can significantly improve the week-3–4 fore-
cast accuracy and greatly increase the efficiency over the traditional multiple linear regression methods.

KEYWORDS: Climate prediction; Numerical weather prediction/forecasting; Statistical forecasting;
Intraseasonal variability; Machine learning; Neural networks

1. Introduction

The public demand for Subseasonal to Seasonal Prediction
project (S2S) forecasts has been steadily increasing in recent
years, primarily driven by certain industries, such as water
management, agriculture, financial markets, energy, transpor-
tation, commerce, tourism, and insurance, etc., to prepare for
and reduce risk from damaging meteorological events well in
advance. In 2016, the National Oceanic and Atmospheric Ad-
ministration (NOAA) initiated efforts to improve its capabil-
ity for weeks 3 and 4 (i.e., 15–28 days ahead) extended range
forecasts. Covering the week-3–4 extended-range lead time
will enable NOAA to provide seamless S2S forecasts to the
public for protecting life and property.

Numerical forecasts on the week-3–4 time scale are rela-
tively new and are some of the most challenging and difficult
to make. Past forecast efforts have focused on the short-term
weather forecasts out to at most 7–10 days, operational short-
term climate outlooks from 6 to 10 days and 8–14 days, and
months-long integrations out to several seasons. There is a

clear forecast gap around week 3 and 4. This is because cur-
rent numerical weather models perform well up to about
seven days in advance, and climate outlooks become more re-
liable as the time horizon extends from months to seasons.
Subseasonal (e.g., week 3–4) forecasts are a middle ground,
where the memory of the initial conditions that impact short-
term weather is diminished after 7–10 days, while the impact
of monthly and seasonal factors such as the state of El Niño,
soil moisture, snow, and sea ice, along with others, is not yet
well established for subseasonal forecasts. Sharma et al.
(2017) and Pan et al. (2019) studied precipitation forecasts in
the eastern United States and the West Coast from short to
extended range and found the current state-of-the-art models
provide little useful forecast skill beyond week 1–2. Numerical
forecast of the atmospheric rivers, atmospheric blocking, and
tropical cyclones showed similar results (Wick et al. 2013;
Nayak et al. 2014; Nardi et al. 2018; Zhong et al. 2018). Modu-
lation of some low-frequency modes, such as the Madden–
Julian oscillation (MJO), quasi-biennial oscillation (QBO),
and sea surface temperature (SST) suggests potential predict-
ability for subseasonal forecasts (Johnson et al. 2014; DelSole
et al. 2017; Vigaud et al. 2018; Baggett et al. 2018; Mundhenk
et al. 2018; Wang and Robertson 2018; Jenney et al. 2019).Corresponding author: Yun Fan, Yun.Fan@noaa.gov
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The Subseasonal Experiment (SubX), a research-to-operations
project launched recently, provides a comprehensive research
infrastructure for developing better S2S forecasts (Pegion et al.
2019).

Numerical weather and climate forecast models have been
improving continuously during the last several decades (Warner
2011; Bauer et al. 2015). However, forecasts from direct dynam-
ical model outputs still suffer from large forecast errors with
lead time increasing due to the deficiency of model physics, er-
rors in initial and boundary conditions, and other reasons.
Therefore, various dynamical model postprocessing strategies
are developed to remove forecast biases and errors, and to
nudge model predictions toward observations, before forecasts
are issued to the public.

Linear statistical postprocessing methods show some success
in improving direct model prediction skill. One of those techni-
ques is the model output statistics (MOS), which relates ob-
served weather elements (predictands) to appropriate model
forecast variables (predictors) via a statistical approach [e.g.,
multiple linear regression (MLR)]. MOS provides a tool for fore-
casters to objectively interpret numerical model output, quantify-
ing uncertainties, remove biases, derive forecast variables not
directly available from numerical forecast models, and provide
improved weather forecast guidance. It is used routinely in dif-
ferent operational centers worldwide (Glahn and Lowry 1972;
Klein and Glahn 1974;Wilson and Vallee 2002, 2003; Glahn et al.
2009; Gneiting 2014). However, the linear approach has some
limitations, such as the huge number (millions) of MOS forecast
equations trained pointwise for different variables over different
sites, projection times, and weather regimes. Moreover, with
increasing lead time, the relationship between predictands and
predictors may be more nonlinear. This is even truer for the
extended range forecasts, such as the week-3–4 forecasts.

In recent years, the great advances in machine learning (ML)
in different fields have received much attention, due to the in-
vention of more flexible and sophisticated ML methodologies
and also the availability of larger datasets (i.e., “big data”) for
exploring challenging issues (Schmidhuber 2015; LeCun et al.
2015). ML technology has been developed to work with big
data across a variety of disciplines and impacts almost every as-
pect of modern society from automation, classification, analysis,
to detection. Modern ML (e.g., deep learning) techniques allow
computational models to learn representations of large datasets
with multiple levels of abstraction. Using a training algorithm,
ML methods allow for identifying and modeling of more com-
plicated relationships between variables that are not limited by
linearity with a given optimization procedures.

Different ML techniques have been used to extract useful in-
formation and insights, and find the “known unknowns” from
big data to solve the more challenging issues and make more ac-
curate weather and climate forecasts. McGovern et al. (2017)
showed that using artificial intelligence (AI) (e.g., decision-tree-
based methods) can improve high-impact weather forecasting.
Totz et al. (2017) used a cluster analysis for winter season pre-
cipitation anomaly outlooks, which outperforms both dynamical
forecast models and a canonical correlation analysis based
method. Cohen et al. (2019) showed ML techniques are far
more powerful at mining data and recognizing patterns, and

may be appropriate for subseasonal to seasonal (S2S) predic-
tions. Neural networks (NN) are one of the most useful methods
used in ML technologies. Modern NNs are able to learn high-
level representations of a broad class of patterns from large
datasets and are very good at discovering intricate structures
hidden within high-dimensional big data. Krasnopolsky and Lin
(2012; Krasnopolsky 2013) showed that neural networks can be
used to improve daily (lead time of 24 h) precipitation forecast
and in many other applications in the Earth system. Liu et al.
(2016) used deep convolution neural networks to detect extreme
weather (e.g., tropical cyclones and atmospheric rivers) in
climate data. Rasp and Lerch (2018) demonstrated that neu-
ral network approaches can significantly outperform traditional
state-of-the-art postprocessing methods for 2-m temperature
forecasts at lead time of 48 h while being computationally afford-
able. NN techniques have a number of advantages. Their flexible
and user-friendly algorithms can be used to simulate arbitrary
nonlinear relationships. NN techniques can also more easily han-
dle a large number of predictors/predictands and may help to dis-
cover complex nonlinear interconnections between predictors
and predictands from large datasets.

So far, the daily week-3–4 forecast skill from direct dynamical
forecast models is much lower than that of the short-range fore-
casts, such as 1–7 days and the week-1–2 forecasts. In this paper
some NN architectures that are more beneficial for using
model-derived fields are proposed. These NNs will be used to
explore and evaluate their capability to improve the week-3–4
precipitation and 2-m air temperature forecasts. The rest of
this paper is organized as follows: the dataset used for the NN
training/testing and detailed NN methodology used in this study
is highlighted in section 2. The NN check, optimal hidden neu-
rons, data representation, and analysis of the week-3–4 model
forecast errors are described in section 3. The NN forecast anal-
ysis and evaluation are presented in section 4, and conclusions
and discussions are given in section 5.

2. Data and methodology

a. Data for NN training and validation

The datasets used for the NN training and testing consist of
daily paired predictor and predictand variables. The dataset
for the predictors used here includes the daily bias-corrected
week-3–4 lead time forecast for total precipitation (P), mean
2-m air temperature (T2m), and 500-hPa height (Z500), and
some others, which are obtained from the NOAA Climate
Forecast System (CFS) (Saha et al. 2006, 2014) for the period
1 January 1999–31 December 2018. Since bias correction (by
removing differences between model climatology and ob-
served climatology) is one of the easiest and most effective
ways to improve the raw model forecasts, one of the goals of
this study is to see if the method introduced here can further
improve the bias-corrected CFSv2 forecasts. The data domain
used here covers the conterminous United States (CONUS)
only. The data has been regridded to 18 3 18 spatial resolu-
tion, nine selected vertical levels (pressure: 1000, 850, 700,
500, 300, 200, 100, 50, and 10), and is on a daily temporal reso-
lution initialized at four different times (0000, 0600, 1200, and
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1800 UTC) per day. Other predictors are also used, including
daily P, T2m, and Z500 climatologies, latitudes, longitudes, ele-
vations, station ID, and sin(t) and cos(t) where t 5 (2p/365)t
and t is the day of the year, all on the same spatial–temporal res-
olutions. These auxiliary predictors are also commonly used in
the MOS and other NN systems.

The datasets used for corresponding target variables (predic-
tands) include the daily observed P from the gauge-based daily
CPC Unified Precipitation Analysis, the observed daily T2m
from the Global Telecommunications System (GTS) based
daily 2-m temperature analysis (Chen et al. 2008; W. Shei 2009,
personal communication; Fan and van den Dool 2008). Both
daily observed P and T2m are converted to two-weekly total
and two-weekly means, and regridded to the same spatial–
temporal resolutions as the above predictors.

The above 20 years of daily paired (predictors and predictands)
datasets have 7305 daily records and can be split into two parts,
the first part (about 6575 daily records, from 1 January 1999
to 31 December 2016) was used for training and the remain-
ing part (about 730 daily records, from 1 January 2017 to
31 December 2018) was used for validation (independent fore-
cast test). Three different k-fold cross-validation tests are also
performed to verify the NN generalization in different periods.

b. Methodology

1) FORMULATION OF THE PROBLEM

Usually, the statistical post processing of model output is
based on the reasonable assumption that there is a relationship
between target variables/predictands (e.g., observed weather and
climate elements) and input variables/predictors (e.g., the corre-
sponding forecast variables of numerical prediction model). In a
generic symbolic way, this relationship can be represented as

Z 5 M(X); X 2 Rn, Z 2 Rm, (1)

where X is an input vector composed of model forecast varia-
bles or predictors, Z is an output vector composed of ob-
served meteorological elements or predictands, n is the
dimensionality of the vector X (or input space), and m is the
dimensionality of the vector Z (or output space). The term M
denotes the mapping (relationship between the two vectors)
that relates vectors X and Z. In a particular case when a single
predictand is considered, the mapping Eq. (1) turns into a sin-
gle valued function of multiple variables. This function/mapping
is expected to be a complex nonlinear function.

Since both model forecast variables (predictors) and obser-
vations (predictands) contain errors in their data representa-
tions due to model deficiency, noise, uncertainty in initial and
boundary conditions, and limited spatial and temporal resolu-
tions, etc., a statistical approximation of the mapping Eq. (1)
can be written as

Y 5 Ms(X): (2)

Here the vectorY can be considered as an estimated predictand
vector based on model variables X, while Ms is a statistical ap-
proximation for the mapping M in Eq. (1). In the majority of
modern MOS systems a single valued and pointwise MLR is

used as the method of statistical approximation. In this case, the
mapping Eq. (2) can be represented by a system of m indepen-
dent linear regression equations:

yq 5 aq0 1 ∑
n

j51
aqj ? xj; q 5 1, …, m: (3)

The coefficients aqj of various equations of the system (3) are
different and usually calculated for each equation (for each
corrected model variable yq) individually and independently.

The linear regression approach Eq. (3) has three major disad-
vantages. First, the essentially nonlinear relationship/mapping
Eq. (2) is approximated by linear dependencies in Eq. (3),
which loses nonlinear components of the relationship between
input vector and output vector. Second, the linear approach, as
designed in most MOS procedures, does not consider the cova-
riability between output variables (e.g., the observed 2-week
total P and mean T2m here), whereas the nonlinear relationship/
mapping Eq. (2) can take into account the relationships be-
tween different observed weather elements (components of
vector Y). Third, the approximation Eq. (3) splits the vector Y
(e.g., P, T2m, wind, and other variables) into single components
yq that are usually treated not only individually and indepen-
dently, but also location by location (i.e., point by point), thus
losing the spatial dependency (or pattern relationship). There-
fore, the approach Eq. (3), by definition, does not completely
use relationships and correlations (or consistency constraints)
offered by the observed data. It also does not use the pattern re-
lationships (or space dependency) offered by the big datasets.

In the following sections, it will be shown that the NN ap-
proach allows users not only to address the aforementioned
important problems and to improve the approximation, but
also greatly reduces the number of approximation equations
which improves training efficiency at the same time.

2) NN EMULATION FOR THE LINEAR MAPPING

The NN techniques are generic, accurate, flexible, and
convenient mathematical/statistical models that can enable
users to emulate/approximate different complicated nonlinear
input/output relationships, by using statistical ML algorithms
(Krasnopolsky 2013). NN can be applied to any problem that
can be formulated as a mapping (input vector vs output vector
relationship). The simplest NN approximations use a family of
analytical functions such as

yq 5 NN(X, a, b) 5 aq0 1 ∑
k

j51
aqj ? fj; q 5 1, 2, …, m, (4)

where

fj 5 F bj0 1 ∑
n

i51
bji ? xi

( )
5 tanh bj0 1 ∑

n

i51
bji ? xi

( )
: (5)

Here, xi and yq are components of the input and output vec-
tors X and Y, respectively; vector a and vector b are the NN
weights; n and m are the number of inputs and outputs, re-
spectively; and k is the number of nonlinear basis activation
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functions fj (or hidden neurons). The hyperbolic tangent is
used as an activation function (Hornik 1991, 1993). Other ac-
tivation functions can be used depending on the problem at
hand (Liu et al. 2016; McGovern et al. 2017; Rasp and Lerch
2018). Equation (4) is a mapping that can approximate any
continuous or almost continuous (with finite discontinuities)

mapping (Krasnopolsky 2013). A pictographic representation
of the entire NN is shown in Fig. 1 and the connections (arrows)
correspond to the NN weights. The NN complexity can be
quickly increased by adding variables in the input layer and/or
output layer, and neurons in the hidden layer.

To find the coefficients aij and bij in NN Eqs. (4) and (5), an
error function E is created:

E 5
1
N
∑
N

t51
[Zt 2 NN(Xt)]2, (6)

where vector Zt is composed of observed weather and climate
elements, vector Xt is composed of all predictors, and N is the
total number of paired records included in the training data-
set. Then, the error function (or cost function) (6) is mini-
mized to obtain an optimal set of all coefficients aij and bij via
a simplified version of the procedure known as the back prop-
agation training algorithm. The back propagation algorithm
searches for the minimum of the error function in weight
space through a simplified version of the steepest (gradient)
descent method. It partitions the final total cost to each of the
single neurons in the network and repeatedly adjusts the
weights of neurons whose cost is high, and back propagates
the error through the entire network from the output to its
inputs.

It is noteworthy, that all NN outputs yq are included in the
same error function (6) and are trained simultaneously using
all observed weather variables included in the output vector
Zt. Therefore, during the training, in addition to diminishing
the difference between the model variables and correspond-
ing observations, the NN also learns the statistical patterns

FIG. 1. The simplest NN with one hidden layer and linear neurons
in the output layer. The hidden layer derives nonlinear transforma-
tions of the inputs and then linear combinations of these nonlinear
transformations are used to model the outputs.

FIG. 2. Time series of the observed 2-week total precipitation from Tucson, AZ (black line),
and the independent forecast week-3–4 total precipitation (red line) (with observed precipitation
input) from NN-1 at same location and same period.

WEATHER AND FORECAS T ING VOLUME 38640

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 08:40 PM UTC



and relationships between the model and observed meteoro-
logical variables, as well as nonlinear dependencies between
variables included in the input vector X and in the output
vector Z in the training dataset. These learned patterns and
relationships are used by NN to correct the output of the
numerical prediction model.

When the trained NN is applied to new data, all Eq. (4) are
evaluated simultaneously using the same coefficients aij and
bij for all outputs. Thus, from an algorithmic point of view,
all m Eq. (4) are one object}a mapping; whereas the MLR
approach (3) is a set of independent functions. At first sight,
Eqs. (3) and (4) look similar; however, three important differ-
ences should be emphasized. In Eq. (4):

(i) The relationship between xi and yq is nonlinear when the
activation function is nonlinear, such as tanh; therefore,
the NN approximation (4) is capable of approximating
both the linear and nonlinear components of the mapping
(4) (Krasnopolsky 2013).

(ii) The NN approximation (4) can approximate not only pat-
tern relationships and correlations between input variables
and output variables, but also the relationship (or covari-
ability) between different observed variables offered by
the observed data included in the NN output vector Z.

(iii) By including multiple variables in the NN output vector at
multiple locations, the NN approach (4) also allows the

algorithm to significantly reduce the maintenance burden
on the NN equations by generating all weights in one
training cycle and storing them in one array file. In con-
trast, the MLR (e.g., MOS) approach in Eq. (3) usually
consists of several thousand to several million individual
and independent equations.

3) DESIGN NN ARCHITECTURES

Effective training the NN system requires not only designing
the NN architecture with faithful representation of training
data, but also careful tuning of the parameters, such as the
number of neurons, learning rate, regularization, and adding
appropriate auxiliary variables in order to achieve more opti-
mal results, avoid overfitting, and achieve better generalization
(Krasnopolsky 2007, 2013; Rasp and Lerch 2018; Fan et al.
2019). In this study, three different NN architectures are
designed or configured as follows:

(i) NN-1, which can produce one corrected CFS variable
(e.g., P or T2m) at one location (grid point) like the
MLR. This pointwise NN setting has an architecture
n:K:1 (n inputs at one location: K hidden neurons: one
output at one location).

(ii) NN-S, which can produce one and/or several corrected
CFS variables (e.g., P and/or T2m) at one or several

FIG. 3. The mean week-3–4 forecast RMSE (left scale in mm for P; right scale in 8C for T2m) as a function of
hidden neurons (k) on the independent forecasts from (a) the NN-S on randomly selected nine neighbor points and
(b) the NN-A on the CONUS domain. Training period: 1 Jan 1999–December 2016. Validation period: 1 Jan 2017–
31 Dec 2018.
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locations (grid points) simultaneously. One NN-S training
can replace two or more MLR equations needed to reach
the same goal in the traditional MLR approach. This NN
setting has an architecture n:K:m (n inputs from one or
several locations: K hidden neurons: m outputs at one
or several locations). NN-S can be treated as a small
regionalized architecture by setting n:K:m (n inputs from a
small region: K hidden neurons: m outputs in a small
region that is not necessarily the same as the input
region).

(iii) NN-A, which can produce one and/or several corrected
CFS variables (e.g., P and/or T2m or more variables) for
the entire forecast domain simultaneously. In this case,
both Xi and Yq in Fig. 1 are vector variables. This NN set-
ting has an architecture L:K:M (L inputs from all avail-
able predictors over all input locations: K hidden neurons:
M outputs from all available predictands over the all fore-
cast domain). Here L and M are not necessarily in the
same domain. In principle, one NN-A training could re-
place several thousand MLR equations needed to reach
the same goal in the traditional MLR approach. NN-A
not only benefits from the flexible NN algorithms, but
also takes full advantage of the available big data.

It should be emphasized that the NN-A architecture allows
the algorithm to account for both nonlinear relationships among

input and output variables, and for the spatial dependency and
the covariability among the predictors and predictands by train-
ing different predictor and predictand variables over the entire
forecast domain simultaneously. During the NN-A training, the
NN algorithm tries to minimize the differences between all pre-
dictors and predictands at all input and output locations simulta-
neously to obtain an optimal set of the NN weighting coefficients
for all locations. The statistical patterns and relationships learned
during the NN training processes are then used by the NN to
make the corrected forecasts for each location. Doing it all at
once in an NN method does not mean regional differences are
neglected.

It should also be noted that the complexity of the NN ap-
proximation is partly controlled by the number of hidden neu-
rons K. The more complicated the mapping, the more hidden
neurons K are required. However, there is always a trade-off
between the desired mapping accuracy and complexity of the
NN emulation. The number K should be carefully controlled
and kept to a minimum in order to avoid overfitting and to al-
low a smooth and accurate mapping. The weight initialization
method (Nguyen and Widrow 1990) is used for reducing the
effects of overfitting and achieving better generalization. The
NN weights can be updated inexpensively on a daily basis in
real time, through a sequential training approach that works
with the training data arriving in real time (record by record).

FIG. 4. Time series of daily week-3–4 total P on independent data by NN-A forecasts (red dash), MLR forecasts
(purple dot–dash), bias-corrected CFS forecasts (black dot), observed climatology (green long dash), and observations
(light blue solid) at three randomly selected locations. The values of RMSE are the averages over the two years.
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3. NN check, optimization, data representation, and
predictability analysis

a. NN sanity check

To evaluate the accuracy of the NN approximation and also
the applicability of NN software used, the NN-1 was trained
at several randomly selected locations to approximate the
identical mapping:

X 5 M(X), (7)

where X could be any predictor and predictand variable. If
the NN is working properly, a mapping performed between a
variable X and itself should return the variable X. Figure 2
shows the independent week-3–4 precipitation mapping from
the NN-1 approximation and the observed 2-week total pre-
cipitation in the same period from one of several randomly
selected locations (Tucson, Arizona). The NN-1 training
period is from 1 January 1999 to 31 December 2015. The ex-
periment indicates that the NN algorithm can almost perfectly
reproduce the observed precipitation for the independent
forecast period from 1 March 2016 to 28 February 2017. The
difference between the above NN-1 and the observation varies
between 20.2 and 0.4 mm. Similar mapping also has been done
on the CFS week-3–4 forecast precipitation with similar results.
The NN-1 also can reproduce the noisier CFS model forecasts

very well with slightly higher mapping errors for reasons noted
below in section 3c.

b. Optimal number of hidden neurons

The complexity of the NN mapping can be controlled by
varying the number of the NN hidden neurons. To evaluate
the optimal size (k) of the hidden neurons in Eq. (4) for the
NN week-3–4 P and T2m forecasts, some criteria, such as the
root-mean-square error (RMSE), bias, correlation, scatter,
skewness, and others are used together to select the optimal
number of hidden neurons. A set of 14 NN-S (9 neighbor
points used here) are trained with varying k from 1 to 14. The
results based on the widely used RMSE are shown in Fig. 3a
with the independent NN forecasts. For the precipitation fore-
cast on a pointwise basis, k 5 3 is the optimal number of NN
hidden neurons. Under the chosen NN-S setting, using more
neurons (k . 3) does not reduce the forecast error, probably
because the NN-S starts to fit more noise from the data. The
results from NN-1 are very similar to those from the above
NN-S settings. When compared with the benchmark MLR
method with the same predictors, both NN-1 and NN-S do a
better job at predicting the observed precipitation. However,
in terms of optimal hidden neurons, the mapping from both
NN-1 and NN-S is not strongly nonlinear (i.e., only a small
number k can be used beneficially).

FIG. 5. The first four leading EOF patterns (scaled by the RMS value of the associated PCs; mm) and their corre-
spondent time series (normalized to unit variance) from bias-corrected CFS ensemble mean (average of 0000, 0600,
1200, and 1800 UTC) week-3–4 forecast total precipitation.
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To evaluate the optimal number of hidden neurons in Eq. (4)
for the NN-A, another set of 15 NN-A tests k varying from
10 to 220 has been conducted. The mean forecast RMSE de-
rived from the week-3–4 forecast P and T2m using independent
testing dataset is shown in Fig. 3b. The results indicate that if
separately forecasting P or T2m, k 5 120 is near the optimal
number of hidden neurons. In contrast, forecasting P and T2m
together requires k 5 200 hidden neurons for optimal results.
This indicates that the NN-A architecture with more than
100 hidden neurons is significantly more nonlinear than NN-1 and
NN-S architectures with a far lower set of hidden neurons (;2–3).
In other words, with NN-A the nonlinear and pattern-wise
corrections for the week-3–4 forecasts of both P and T2m
over the entire forecast domain (CONUS) is much more ambi-
tious and potentially beneficial than the point-wise correction
for just a single location or several neighboring sites. Therefore,
the NN-A mapping, which is designed to take advantage of the
flexible NN algorithm and big datasets and to do more sophisti-
cated patternwise corrections, presents much more nonlinear
features, as expressed in terms of the optimal number of hidden
neurons. In general, the computational cost increases linearly
with hidden neurons used.

c. Data representation

It is important to understand the characteristics of the
data being analyzed because it will inform choice in the NN

architectures. When looking at the time series of the daily
CFS week-3–4 forecast total precipitation and its correspond-
ing observed total precipitation, two significant differences
emerge:

1) The observed total precipitation (e.g., light blue solid curves
in Fig. 4) is smoother than its corresponding CFS week-3–4
forecast total precipitation (black dot curves in Fig. 4). This
is because each of the daily observed 2-week total precipita-
tion has a 13-day overlap of data on its adjacent date. How-
ever, for each of the daily CFS week-3–4 forecast total
precipitation, the model forecasts do have such 13-day
overlap in terms of dates, but they come from different
initializations. Due to forecast error growth, the CFS
data are noisier compared to observations.

2) The trajectories of the daily CFS week-3–4 forecast total
precipitation at the same location, but initialized at four
different initial times (0000, 0600, 1200, or 1800 UTC on
each day), can be very different after 4 weeks of model in-
tegration. However, how to address the above issues in
training datasets properly is crucial for improving the NN
training.

To minimize impacts related to the above two issues, the
empirical orthogonal function (EOF) analysis was used to ex-
plore the spatial–temporal variations of the bias-corrected
CFS week-3–4 forecast P and T2m in the period covering

FIG. 6. The first four leading EOF patterns (scaled by the RMS value of the associated PCs; mm) and their related
time series (normalized to unit variance) from forecast errors (bias-corrected CFS week-3–4 ensemble total P minus
observation).

WEATHER AND FORECAS T ING VOLUME 38644

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 08:40 PM UTC



1 January 1999–31 December 2018 from four different initial
times. The encouraging results indicate that the leading EOF
patterns and the variations of their corresponding time series
are quite similar from the four different initial times (0000,
0600, 1200, and 1800 UTC). Figure 5 depicts the first four
leading EOF patterns and their corresponding time series
from the CFS week-3–4 ensemble mean total precipitation
(averaged from 0000, 0600, 1200, and 1800 UTC), which are
similar to results from the individual CFS week-3–4 total
precipitation forecasts initialized at 0000, 0600, 1200, and
1800 UTC. The spatial patterns of the leading EOF modes
are relatively large-scale and the temporal variations are
dominated by annual and semiannual cycles. The first four
modes account for about 57% of the total variance from the
ensemble mean forecasts, but only about 44% of the total
variance from individual members.

The EOF analysis was applied to the corresponding ob-
served 2-week total precipitation. The first four leading EOF
modes account for about 42% of the total variance from the
observed 2-week total precipitation. It shows that at large
scales (the first four leading EOF patterns) the CFS week-3–4
forecast total precipitation bears many similarities with obser-
vational data. However, the corresponding time series from
the observational data are noisier, except for the first leading
EOF, the variation of its time series is also dominated by a
very strong annual cycle.

The same EOF analysis was also applied to the CFS week-3–4
ensemble mean forecast T2m and its corresponding observed
2-week mean T2m. The results (not shown) reveal that the
leading EOF spatial patterns from the CFS week-3–4 forecast
T2m are dominated by large-scale patterns and are remarkably
similar to those from the observational data. However, the
amplitudes and timing are main issues for the CFS week-3–4
forecasts. The first four leading EOF modes account for 84%
of the total variance for the CFS week-3–4 ensemble mean
T2m forecasts and 78% of the total variance for the observa-
tional data. This suggests that the structures of the T2m are
simpler than the P.

The above results suggest that the CFS is comparatively
better at predicting large-scale patterns and low-frequency
variations in the observed P and T2m than at capturing fine-
scale variations of those highly parameterized and unresolved
physical processes. These results indicate important sugges-
tions in the NN training processes:

(i) Using more reliable and robust large-scale pattern infor-
mation in the NN predictors (e.g., the CFS forecast P,
T2m, and Z500) may prove to be more beneficial for the
NN forecasts.

(ii) Using ensemble means (average from 0000, 0600, 1200, and
1800 UTC) may further improve data representation, be-
cause ensemble mean not only smooths spatial–temporal

FIG. 7. The first four leading EOF patterns (scaled by the RMS value of the associated PCs; 8C) and their related
time series (normalized to unit variance) from forecast errors (bias-corrected CFS week-3–4 ensemble mean
T2m minus observation).
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noise in the input data, but also increases the percentage
representation (explanation) of the total variance of
the data.

d. Analysis of the CFS week-3–4 P and T2m forecast errors

The similar EOF analysis was also applied to the bias-
corrected CFS week-3–4 ensemble mean P and T2m fore-
cast errors (i.e., forecast minus observation). Moreover,
such an EOF analysis can also provide insight into limits
of CFS week-3–4 P and T2m forecasts (in other words,
what do the CFS week-3–4 forecast errors look like and to what
extent can the errors be removed?). Ideally, if the forecast er-
rors are either constant or vary regularly, then nearly all errors
can be removed easily. If the forecast errors are characterized by
large-scale spatial pattern and low-frequency temporal variations,

then at least part of the errors can be corrected in most cases. The
worst scenario is if forecast errors are white noise–like. In that
scenario, there is no way the forecast errors can be corrected or
removed, no matter what methods are used.

The results (Fig. 6) reveal that in general these leading
EOF patterns from the bias-corrected CFS week-3–4 ensemble
mean P forecast errors are relatively large-scale patterns and
feature some low-frequency variations (e.g., annual cycle), but
are much noisier compared with the time series in Fig. 5. These
forecast errors are caused by the model deficiency, errors in
initial and boundary conditions, definition differences of the
model forecast versus observed variables, and the nature of
predictands. They may be partly removable by some post-
processing techniques. For example, the first and second leading
forecast error modes feature relatively large-scale patterns and

FIG. 8. (left) The RMSE and (right) AC of daily week-3–4 P by (a),(d) bias-corrected CFS forecasts against
observation; (b),(e) RMSE differences (dRMSE) and AC differences (dAC) between CFS and MLR forecasts; and
(c),(f) as in (b) and (e), but betweenMLR and NN forecasts. Training period: 1 Jan 1999–31 Dec 2016. Testing period:
1 Jan 2017–31 Dec 2018. The values in panel titles are the averages over the CONUS domain. For the AC and dAC,
the shaded regions exceed the 99% confidence level.
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are dominated by the annual cycle. This means that the
CFS does not produce a satisfactory forecast for the ob-
served annual cycle in precipitation over CONUS in terms
of the amplitudes and phases. The good news is that usually
part of these climate-like forecast errors (or climate biases)
can be easily removed by some bias correction methods
(Fan and van den Dool 2011).

It should be mentioned that the above forecast errors from
the first four leading EOF modes only account for about 34%
of the total variance from the week-3–4 ensemble mean P
forecast errors, meaning limited opportunity for forecast im-
provement over the CFS week-3–4 P forecasts. Not all of
these forecast errors are correctable (or removable). In gen-
eral, the higher the EOF leading mode, the smaller the scale
in spatial pattern and the noisier in temporal variation. Usually

these small-scale and high-frequency forecast errors are
even more difficult to remove. To some extent, they may reflect
the prediction limits for the CFS week-3–4 precipitation
forecasts.

For the bias-corrected CFS week-3–4 ensemble mean T2m
forecast errors, the most dominant (i.e., the first 4 leading
EOF) forecast error patterns (Fig. 7) show large-scale spatial
patterns very similar to the forecasts and observations individ-
ually. The corresponding time series also feature some low-
frequency (e.g., annual cycle) variations. The first four leading
EOF modes account for 78% of the total variance for the
forecast errors, much higher than the forecast P and therefore
potentially more predictable than the P. This means that a
large part of the T2m forecast errors can be represented
by just a few leading EOF modes. These climate bias–like

FIG. 9. (left) The RMSE and (right) AC of daily week-3–4 T2m by (a),(d) bias-corrected CFS forecasts against ob-
servation; (b),(e) RMSE differences (dRMSE) and AC differences (dAC) between CFS and MLR forecasts; and
(c),(f) as in (b) and (e), but betweenMLR and NN forecasts. Training period: 1 Jan 1999–31 Dec 2016. Testing period:
1 Jan 2017–31 Dec 2018. The values in panel titles are the averages over the CONUS domain. For the AC and dAC,
the shaded regions exceed the 99% confidence level.
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forecast errors indicate that the CFS is very good at forecast-
ing the week-3–4 T2m spatial patterns but has problems fore-
casting their amplitudes and timing. Compared with the
forecast P errors, these T2m forecast errors should be com-
paratively easier to remove in general. However, because the
time series of the first four leading EOF modes are as noisy as
is the case for forecast P errors, it may still be difficult to re-
move these T2m forecast errors. Some features of the above
forecast errors are also true for the short-range weather fore-
casts from day 1 up to week 2 in some forecast systems,
such as the NCEP Global Forecast System (GFS) (Fan and
van den Dool 2011; Fan et al. 2015).

4. NN week-3–4 P and T2m forecasts

a. Forecasts from different NN architectures

There is considerable need for skillful week-3–4 forecasts.
However, forecasting for this time scale is one of toughest
areas and prediction skills are very low in general. One open
question to be explored here is if the ML (e.g., the nonlinear
NN systems used here) techniques with the bias-corrected
CFS predictors as input can outperform the bias-corrected
CFS P and T2m forecasts in week-3–4 time scale and the
benchmark MLR tools with the same inputs as the NN
systems.

The daily time series of the week-3–4 P from the observa-
tional data, the bias-corrected CFS forecast, the MLR forecast,
and the NN forecast for three randomly selected locations are
also shown in Fig. 4 above. Overall, the results from the NN

forecasts are slightly better than the results from the MLR
method. In general, both methods beat the climatology fore-
casts, but not by much. The forecast skill (in terms of the
RMSE) for the week-3–4 precipitation is still quite low. The re-
sults also indicate that the resulting week-3–4 NN precipitation
forecasts by using the ensemble mean from four initial times
(0000, 0600, 1200, and 1800 UTC) are in general better than the
NN forecasts by using the CFS forecasts from an individual
ensemble member. Similarly, the week-3–4 forecasts by using
NN-A generally outperform those from the NN-1 or NN-S,
since NN-1 and NN-S settings do not fully take the benefits
offered by the NN algorithms and big data by only working
on very small portions of data at a given time.

As mentioned earlier, the NN-A setting can take advantage
of the flexible NN algorithm that accounts for complicated lin-
ear and nonlinear relationships, spatial dependency, and cova-
riability among predictors and predictands. The NN-A setting
was explored with a variety of predictors and predictands.
The results show that using observed daily P and T2m clima-
tologies as predictors outperforms other auxiliary predictors,
such as sin(t), cos(t), latitude, longitude, elevation, station
ID, etc., because all these effects are already well represented
by the climatology variables. It also shows that using the same
group of predictors to forecast the week-3–4 P and T2m
together (covariability between observed P and T2m counted)
is better than forecasting the same P and T2m separately.

In the following part of this paper, the focus will turn to the
more beneficial NN-A setting by forecasting P and T2m
together. The five predictors used in NN training include the

FIG. 10. Mean time series of the daily week-3–4 (a) P and (b) T2m spatial anomaly correla-
tions over the CONUS (5-day running mean applied) among 1) NN (red): independent NN fore-
casts (Test 3) and observations, 2) CFS (green): bias-corrected CFS forecasts and observations,
and 3) DN (black): dependent NN (all data January 1999–31 Dec 2018 used for NN training)
and observations. Validation period: 1 Jan 2012–31 Dec 2018.
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CFS bias-corrected ensemble mean week-3–4 total P, anomaly
T2m and Z500, and the observed P and T2m climatologies. The
two predictands are observed total P and anomaly T2m.

b. Verification of the daily NN week-3–4 P and
T2m forecasts

In this subsection, the spatial-temporal distribution of the
week-3–4 P and T2m forecast skill will be explored. Figure 8
shows that the root-mean-square error (RMSE) and anomaly
correlation coefficients (AC) of the bias-corrected ensemble
mean CFS precipitation forecasts when adjusted by the NN-A
are overall better than the adjusted forecast obtained from
the benchmark pointwise MLR method. Here the NN-A and
MLR training period is from 1 January 1999 to 31 December
2016. The period of 1 January 2017–31 December 2018 is used
as an independent verification period. The above results
indicate both the NN-A and MLR methods improve the bias-
corrected CFS week-3–4 precipitation forecasts, and especially
the forecast skill in various parts of the western CONUS is en-
couraging (AC over 0.4 or 0.5). However, some degradation
is also seen in limited areas for the NN-A when compared
with the MLR, such as near the northeastern United States.
In general, the NN-A forecasts show better forecast skills
than the MLR forecasts over most locations in term of both
the RMSE and AC, with the AC improvement more robust.
This may also indicate that accounting for the nonlinear rela-
tionship between the predictors and predictands, as well as

making use of colinearity plays an important role in precipita-
tion forecasting.

As Fig. 8, Fig. 9 shows the week-3–4 T2m forecast skills
from the bias-corrected CFS, the MLR, and the NN-A meth-
ods. Both the NN-A and the MLR are able to reduce the CFS
forecast errors in terms of the RMSE, although not as much.
The performance of the NN-A is slightly better than the
MLR method, in terms of the RMSE forecast skill. However,
in terms of the AC forecast skill it is encouraging that the
NN-A method is significantly better than the MLR method in
most places except some degradation in limited areas. Again,
this may indicate that the nonlinear relationship plays an im-
portant role between the predictors and predictands at im-
proving the week-3–4 T2m forecasting.

c. Three k-fold cross validations

In this subsection, three multiyear daily NN week-3–4 P and
T2m (independent) forecast experiments were conducted to
further explore whether the week-3–4 P and T2m forecast
improvement from the ML (e.g., the nonlinear NN systems
used here) technologies are robust, reliable, and meaningful
when compared with the bias-corrected CFS week-3–4
forecasts. Three k-fold cross-validation tests were performed as
follows:

Test 1: Remove 3 years of daily paired data from a 20-yr period
(1999–2018) of daily pooled data sequentially and yearly,

FIG. 11. The observed (Obs), CFS, MLR, and NN forecast week-3–4 P anomalies on 11 Feb 2017.
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then use the middle year only as the independent forecast
(testing) dataset, with the remaining 17 years daily paired
data employed as training dataset. For the year 1999 and
2018, only 2 years of daily data are removed, with the far
side year (i.e., 1999 or 2018) used only as an independent
forecast (testing) dataset, and the remaining 18 years daily
data used as the primary training dataset. The above proce-
dure was repeated yearly for 20 times so that the indepen-
dent NN-A experiments were performed every year from
1999 to 2018.

Test 2: Remove one year of daily paired data from a 20-yr period
(1999–2018) of daily pooled data sequentially and yearly,
taking these as the independent forecast (testing) dataset
and the remaining 19 years daily paired data as the train-
ing dataset. The above procedure was repeated yearly for
20 times. Therefore, another 20 yearly independent NN-A
experiments were performed from 1999 to 2018.

Test 3: Remove 60 days of daily paired data (each in 2012–18)
from a 20-yr period (1999–2018) of daily pooled data
sequentially as the independent forecast (testing) dataset,
using the remaining 19 plus years of daily paired data as
the training dataset. A total of 42 NN-A 60-day independent
experiments cover the period from 2012 to 2018.

Figure 10 shows the time series of the daily week-3–4 forecast
P and T2m spatial anomaly corrections (AC) averaged over
2012–18 from (i) the NN (Test 3) independent forecasts,

(ii) the NN dependent forecasts (training data covering 1999–
2018, can be viewed as the upper limit of NN forecasts) and
(iii) the bias-corrected CFS forecasts. The results indicate that
the NN techniques indeed can make a robust improvement
for the week-3–4 P and T2m forecasts over the bias-corrected
CFS forecasts. Both of the independent NN week-3–4 P and
T2m forecasts are improved over the bias-corrected CFS P
and T2m forecasts, with the NN week-3–4 P forecast improve-
ment (mean AC from 0.05 to 0.21) being a more robust im-
provement across all times of the year, while the NN week-3–4
T2m forecast improvement (mean AC from 0.16 to 0.24) is
less robust than the P forecasts. The results also show that the
independent NN (Test 3) week-3–4 P and T2m forecasts have
very similar tendencies as the dependent NN week-3–4 P and
T2m forecasts. This indicates that sometimes the dependent
NN forecast systems are more predictable than other times
and the independent NN forecast systems follow the same ups
and downs.

For Test 2, the mean time series of the daily NN week-3–4
forecast P and T2m spatial anomaly correlations closely fol-
low the results from Test 3, with forecast skill degraded
slightly (mean AC from 0.21 to 0.20 for P and from 0.24 to
0.22 for T2m), due to the training sample data being farther
away from the dependent training sample data. For Test 1, its
mean time series of the daily NN week-3–4 forecast P and
T2m spatial anomaly correlations also follow the results from
Test 3 quite well with forecast skill further degraded (mean

FIG. 12. As in Fig. 11, but for 25 Jul 2017.
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AC from 0.21 to 0.19 for P and from 0.24 to 0.20 for T2m),
due to the training sample data being even farther away from
the dependent training data. Therefore, in principle, if we can
nudge the training sample (e.g., Test 3, but withhold 30 days
data as independent test data) closer to the dependent train-
ing sample, the forecast skill should be further improved
when compared with Test 3.

d. Comparison of different forecast methods

Finally, when checking the overall week-3–4 forecast per-
formance of three (CFS, MLR, and NN) forecasts over the
multiyear verification period, both the MLR and the NN con-
sistently beat the bias-corrected CFS. Of the MLR and NN
forecasts, the NN forecasts significantly outperformed the
pointwise MLR forecasts in many respects. Figures 11–14 de-
pict examples of the observed week-3–4 P and T2m anoma-
lies, together with the corresponding week-3–4 CFS, MLR,
and NN forecast P and T2m anomalies. In these cases, the
NN techniques show very encouraging and impressive ability
to turn around or reverse the incorrect P and T2m forecast
patterns seen in the bias-corrected CFS forecasts. Usually the
above “turn around” events can persist for several days and
can happen in any season. One possible explanation for this is
that model forecast spatial patterns are systematically and fre-
quently offset in certain time frames and locations with cer-
tain P, T2m, and Z500 patterns, and the NN architecture used

here has the ability to allow the NN algorithm to remember
what happened. Then, the NN system can determine what is
(are) the best and most important forecast input(s), where
these (group) points are located, and how to minimize the
forecast errors in multiple dimensions for best mapping the
target (predictand) points, an accomplishment that cannot
be done with the traditional pointwise and spatially independent
MLRmethod.

5. Conclusions and discussion

In this study, NN techniques are used to improve the
NCEP CFS week-3–4 P and T2m forecasts, and to explore the
predictability of the CFS week-3–4 P and T2m forecasts.
Benefiting from the great advances in ML in recent years, NN
techniques show some advantages over traditional statistical
methods such as MLR: its flexible algorithms can account for
complicated linear and nonlinear relationships, spatial depen-
dency, and covariability in predictors and predictands, and
at the same time, it is able to handle big data easily and
efficiently.

Knowing the datasets well and using a better data represen-
tation are very important before applying NN training. The
EOF analysis indicates that the CFS is very good at predicting
large-scale patterns and low-frequency variations in observed
P and T2m, but less so at capturing highly parameterized and
unresolved processes in P and T2m. Better data representation

FIG. 13. The observed (Obs), CFS, MLR, and NN forecast week-3–4 T2m anomalies on 15 Mar 2018.
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can also be achieved by using ensemble means to increase the
explained percentage of total variance and to reduce noise in
the data.

The EOF analysis of the CFS week-3–4 P and T2m forecast
errors provides some insight on the extent that forecast errors
are correctable. The results reveal that the spatial-temporal
structures of the most dominant CFS week-3–4 forecast errors
have relatively large-scale spatial patterns with low-frequency
variations, such as the annual cycle, namely, climate biases. This
is also true for some short-range weather forecast systems from
day 1 up to 2 weeks. In general, at least part of these large-scale
and low-frequency forecast errors are removable.

Different NN configurations are used to compare to the
benchmark MLR postprocessing method. By designing more
beneficial NN setups, the NN-A architecture, is able to account
for not only nonlinear features or relationship within a given
large dataset, but also spatial dependency (e.g., pattern relation-
ships) by training different predictors and predictands from the
entire forecast domain simultaneously. Moreover, the NN-A ar-
chitecture can also account for the covariability among the pre-
dictands by training different predictands simultaneously.
Together, these learned statistical patterns and relationships
from the NN training processes are then used to correct the
CFS week-3–4 forecasts. The NN-A has the ability to extract
more complicated and high-level information hidden behind big
data. Thus, the NN-A can perform more sophisticated forecast

corrections, such as reversing incorrect forecast patterns, which
is impossible for the traditional method like pointwise MLR.

Although the improvement for the week-3–4 P and T2m is
very encouraging, the overall forecast skill (in terms of both
RMSE and AC skills) for the week-3–4 P and T2m predic-
tions is still quite low, when compared to the week-2 outlooks.
Since the NN forecasts here critically depend on the quality of
the CFS forecast inputs, improving the CFS itself remains crit-
ically important to improve the week-3–4 forecasts. Another
potential way to improve the CFS week-3–4 P and T2m fore-
casts is to do more detailed dynamic analyses and to consider
including more related predictors. Using more advanced NN
architectures (e.g., deep NNs) and more advanced ML techni-
ques could also help to improve the forecasts. Further studies
can advance this capability.
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FIG. 14. As in Fig. 13, but for 10 Aug 2018.
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